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Ultramafic geoecology of South 
and Southeast Asia
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Abstract 

Globally, ultramafic outcrops are renowned for hosting floras with high levels of endemism, including plants with 
specialised adaptations such as nickel or manganese hyperaccumulation. Soils derived from ultramafic regoliths are 
generally nutrient-deficient, have major cation imbalances, and have concomitant high concentrations of potentially 
phytotoxic trace elements, especially nickel. The South and Southeast Asian region has the largest surface occur-
rences of ultramafic regoliths in the world, but the geoecology of these outcrops is still poorly studied despite severe 
conservation threats. Due to the paucity of systematic plant collections in many areas and the lack of georeferenced 
herbarium records and databased information, it is not possible to determine the distribution of species, levels of end-
emism, and the species most threatened. However, site-specific studies provide insights to the ultramafic geoecology 
of several locations in South and Southeast Asia. The geoecology of tropical ultramafic regions differs substantially 
from those in temperate regions in that the vegetation at lower elevations is generally tall forest with relatively low 
levels of endemism. On ultramafic mountaintops, where the combined forces of edaphic and climatic factors inter-
sect, obligate ultramafic species and hyperendemics often occur. Forest clearing, agricultural development, mining, 
and climate change-related stressors have contributed to rapid and unprecedented loss of ultramafic-associated 
habitats in the region. The geoecology of the large ultramafic outcrops of Indonesia’s Sulawesi, Obi and Halmahera, 
and many other smaller outcrops in South and Southeast Asia, remains largely unexplored, and should be prioritised 
for study and conservation.
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soil relations, Serpentine vegetation, Ultramafic plants, Metal hyperaccumulators
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Background
Ultramafic soils are weathered products of lithologies, 
such as peridotite and serpentinite bedrock, consist-
ing predominantly of ferromagnesian silicate minerals 
(Cardace et al. 2014; Moores 2011). Ultramafic soils are 
generally deficient in essential plant mineral nutrients 
(phosphorus, potassium), have major cation imbalances 
(low calcium-to-magnesium molar ratios), and have high 
concentrations of certain phytotoxic elements, including 
nickel, cobalt and manganese (Brady et al. 2005; Kazakou 
et al. 2008; O’Dell and Rajakaruna 2011). Tropical ultra-
mafic soils, unlike those in temperate regions (Alexander 

2009; Alexander and DuShey 2011), can be strongly 
weathered due to rainfall intensity and high temperature, 
and depending on elevation, can develop as laterites (e.g. 
Ferralsols) (Kruckeberg 2002; Mandal et al. 2015; van der 
Ent et al. 2013a; Vithanage et al. 2014).

Depauperate ultramafic soils may generate selec-
tive pressures promoting speciation and the evolution 
of ultramafic endemism (Anacker 2014; Kay et  al. 2011; 
Rajakaruna 2004), often leading to distinctive plant com-
munities worldwide (Anacker 2011; Brooks 1987). The 
biota of ultramafic soils has contributed greatly to the 
development of ecological and evolutionary theory (Har-
rison and Rajakaruna 2011; Strauss and Cacho 2013) 
and to the study of the genetics of adaptation and spe-
ciation (Brady et  al. 2005; Palm and Van Volkenburgh 
2014; von Wettberg and Wright 2011). Ultramafic floras 
are, however, threatened by deforestation, agricultural 
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development, mining, and climate change-associated 
stressors (Boyd et  al. 2009; Harrison et  al. 2009; Raja-
karuna and Boyd 2008; Vallano et al. 2012). These threats 
to ultramafic biota provide opportunities for conserva-
tion and restoration-oriented research (Elam et al. 1998; 
O’Dell and Claassen 2011; Weiss 1999; Whiting et  al. 
2004; Wolf 2001).

South and Southeast Asia contain several globally sig-
nificant biodiversity hotspots (Mittermeier et  al. 2005), 
including areas in Indo-Burma, Philippines, Sundaland 
(western half of the Indo-Malayan archipelago), and 
Western Ghats and Sri Lanka. The Borneo lowlands is 
the only ecoregion globally to surpass 10,000 plant spe-
cies (Kier et  al. 2005) and North Borneo is one of the 
top five biodiversity centres in the world (Barthlott et al. 
2007). Despite South and Southeast Asia harboring sev-
eral important biodiversity hotspots, the influence of 
edaphic factors on biodiversity is largely unknown (van 
der Ent et  al. 2015a). Compared to research on ultra-
mafic outcrops in temperate and Mediterranean regions 
(Alexander et al. 2007; Rajakaruna et al. 2009), ultramafic 
geoecology in this part of the world is also substantially 
understudied (Proctor 1992, 2003). In terms of tropical 
regions, most research related to ultramafic floras to date 
has focussed on New Caledonia (Isnard et al. 2016; Jaffré 
et al. 2010, 2013; Pillon et al. 2010; Pillon 2012). Although 
ultramafic outcrops of New Caledonia are of a simi-
lar latitude and general climate to South and Southeast 
Asia, the evolutionary histories of its flora and fauna are 
distinct. New Caledonia is on the east of the Lydekker’s 
Line, which separates the eastern edge of Wallacea from 
the Australian Region (which lies on the Sahul Shelf ), 
marking a distinct change in floristic affinities. In this 
review, we also exclude New Guinea (Indonesian West 
Papua and Papua New Guinea) for the same reason, but 
note that despite the concomitant occurrence of ultra-
mafic outcrops and exceptionally high biodiversity, virtu-
ally nothing is known about the ultramafic geoecology of 
this island. Research on the floristics and ecology of the 
understudied ultramafics of South and Southeast Asia 
is critical to provide a comprehensive assessment of the 
ultramafic geoecology of tropical Asia.

This review examines the literature on the geoecology 
of ultramafic areas in South and Southeast Asia, covering 
India, Pakistan, and Sri Lanka to the west, Myanmar and 
Cambodia to the north, and Malaysia, Indonesia (exclud-
ing West Papua), and the Philippines to the east (Fig. 1; 
Table 1); all of which lie on the western side of Lydekker’s 
line and share a similar climate. We focus on (i) soil–plant 
relations, including studies on floristic diversity, soil–
plant elemental relations, and soil microbes; (ii) ecologi-
cal aspects, including studies on vegetation structure and 
composition and plant endemism; (iii) cross-kingdom 

interactions, including studies on herbivory, mycorrhizal 
associations, and invertebrate diversity; (iv) evolutionary 
aspects; (v) physiology and genetics; (vi) phytotechnolo-
gies; and finally, (vii) threats and conservation. We con-
clude the review by highlighting countries within South 
and Southeast Asia requiring further study, drawing 
attention to major gaps in knowledge. 

Soil–plant relations
Ultramafic soils worldwide share a distinct suite of 
chemical and physical features (Rajakaruna et  al. 2009); 
however, tropical ultramafic soils may differ in elemental 
content, moisture, organic matter content, and soil ped-
ology (Kierczak et al. 2007; Vithanage et al. 2014), com-
pared to those in temperate and Mediterranean regions 
(Alexander 2009; Alexander et  al. 2007). Table  2 lists 
key soil properties of ultramafic soils from South and 
Southeast Asia, focusing on pH, Ca:Mg molar ratio, Ni, 
Cr, and the major nutrients, P and K. Plants growing on 
ultramafic soils have to contend with a suite of edaphic 
stressors, including low nutrient content, high levels of 
phytotoxic elements, and, at times, water stress (Brady 
et  al. 2005). Plants and soil microbes of ultramafic soils 
tolerate these edaphic stressors via efficient uptake of 
essential nutrients, and exclusion of, or conversely accu-
mulation and localization of high concentrations, of cer-
tain phytotoxic elements, among other adaptations (see 
Palm and Van Volkenburgh 2014 for a discussion).

Plant diversity and soil–plant elemental profiles
In Sukinda, India, chromite mine spoils composed 
of ultramafic substrates have Ni ranging from 187 to 
215  µg  g−1 and Ca:Mg molar ratios of 1.69–2.27; from 
which, in total, 113 plant species belonging to 51 families 
have been recorded (Samantaray et al. 2001). Some spe-
cies which colonize the substrate exhibit traits typical of 
plants adapted to ultramafic soils, including sclerophyl-
lous and microphyllous leaves (Brady et  al. 2005), but 
individual plants also show chlorosis, leaf curling, and 
necrosis.

On the Andaman Islands, India, ultramafic soils with 
high Ni concentrations (2700–10,100  μg  g−1) harbor 
eight Ni hyperaccumulator plant species belonging to 
eight different genera and seven different families (Datta 
et  al. 2015). Of these, Dichapetalum gelonioides subsp. 
andamanicum (Dichapetalaceae) and Rinorea benga-
lensis (Violaceae) accumulated up to 30,000  μg  g−1 Ni. 
There is substantial potential for using remote sensing 
tools to examine the vegetation communities on the 
ultramafics of the Andaman Islands, where the ultra-
mafic outcrops are mostly inaccessible and the vegeta-
tion deserves more intensive exploration (Chaudhury 
et al. 2015).



Page 3 of 28Galey et al. Bot Stud  (2017) 58:18 

In Northern Pakistan, the ultramafics of Mingora and 
Kabal in the Swat region include assemblages of serpen-
tinite, green schist, talc-carbonate schist, and metaba-
salts in the Mingora–Shangla mélange zone (Shah et  al. 
2010). Relatively high accumulation of Ni and Cr has 
been recorded in the plant tissue of Indigofera gerardiana 
(Fabaceae), Saccharum griffithii (Poaceae), Lycopersicon 

esculentum (Solanaceae), and Chrysopogon zizanioides 
(Poaceae) growing in the Kot Parang Ghar mélange zone 
in the Bucha Area, Pakistan (Shah et al. 2010, 2014).

In Sri Lanka, ultramafic rocks occur along a Precam-
brian suture zone at the boundary of the Vijayan and 
Highland Series, metamorphic remnants of two ancient 
tectonic plates (Dissanayaka 1982; Munasinghe and 

Fig. 1 Map of South and Southeast Asia showing the distribution of ultramafic outcrops in the region. Bottom inset is a more detailed outline of 
ultramafic outcrops in Borneo, Palawan, Mindanao, Sulawesi, and Halmahera. Not all regions of India have complete geologic surveys, and we 
were unable to locate precise information about ultramafic outcrops in Burma and Laos. The ultramafic outcrop location in Northern Thailand is 
approximate. The extent of each outcrop shown is not to scale [Figure compiled with data from Central Energy Resources Team (1999), Datta et al. 
(2015), Kfayatullah et al. (2001), Shi et al. (2012), Baker et al. (1992), Van der Ent et al. (2013a, 2015a), Tan and Khoo (1993), MacDonald and Barr (1984), 
Geological Survey of India, Geological and Mineral Maps of States and Regions (http://www.portal.gsi.gov.in/portal/page?_pageid=127,603606&_
dad=portal&_schema=PORTAL), and OneGeology Portal (http://portal.onegeology.org/OnegeologyGlobal/)]

http://www.portal.gsi.gov.in/portal/page%3F_pageid=127%2C603606%26_dad%3Dportal%26_schema%3DPORTAL
http://www.portal.gsi.gov.in/portal/page%3F_pageid=127%2C603606%26_dad%3Dportal%26_schema%3DPORTAL
http://portal.onegeology.org/OnegeologyGlobal/
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Dissanayake 1980). The geochemistry of these outcrops, 
particularly of Ussangoda along the southern coast, has 
been well-documented (Hewawasam et al. 2014; Rajapak-
sha et  al. 2012, 2013; Tennakoon et  al. 2007; Vithanage 
et al. 2014). The floristics of the ultramafic outcrops of Sri 
Lanka, especially of Ussangoda, have also received con-
siderable attention (Brooks 1987; Rajakaruna and Baker 
2004; Rajakaruna and Bohm 2002; Rajakaruna et al. 2002; 
Samithri 2015; Senevirathne et al. 2000; Weerasinghe and 
Iqbal 2011).

Research suggests that Sri Lanka’s ultramafic flora is 
impoverished with respect to the total number of plant 
species and percent proportion of endemic species. To 
date, 67 plant species belonging to 61 genera and 30 
families have been identified from Ussangoda (Samithri 
2015). Combined with an additional 40 taxa reported 
from three other sites surveyed by Rajakaruna and Bohm 
(2002), the total ultramafic flora of Sri Lanka stands at a 
mere 107 species, compared to many-fold more docu-
mented from other sites in Southeast Asia (van der Ent 
et al. 2015a). Of the species documented from ultramafic 
soils, only Vernonia zeylanica (Asteraceae) is endemic 
to Sri Lanka (MOE 2012), although the taxon is not 
restricted to the substrate.

Soil microbes
Several recent studies, conducted in temperate and 
Mediterranean regions of the world, explore the roles 
microbes play in the ecology of ultramafic habitats as 
well as in the remediation of metal-contaminated soils 
(Batten et al. 2006; Ma et al. 2015; Schechter and Branco 
2014). Although studies on microbial ecology of ultra-
mafic soils in South and Southeast Asia are minimal, Pal 
et  al. (2004, 2005, 2006, 2007) and Pal and Paul (2012) 
have carried out a series of studies on microbial diversity 
and ecology of ultramafic soils on the Andaman Islands, 
India. In one of these studies, Pal et al. (2005) compared 
physicochemical and microbial properties of ultramafic 
soils with those from adjacent non-ultramafic localities. 
The elemental profiles were characteristic of ultramafic 
soils, with high concentrations of Mg, Ni, Cr, and Co. 
Furthermore, the ultramafic soils showed low micro-
bial density (6.2–11.3 ×  106 colony forming unit/g soil) 
and activity (1.7–3.5  µg fluorescein/g dry soil/h) rela-
tive to non-ultramafic soils. The ultramafic-associated 
microbial population (including bacteria and fungi) was 
dominated by bacteria and was more resistant to metals 
than populations from non-ultramafic soils. Among the 
ultramafic isolates, 8 and 11 bacteria tolerated >12.0 mM 
Ni and >16.0  mM Cr, respectively, while six fungal iso-
lates showed a minimum inhibitory concentration (MIC) 
value >8.0  mM Co. The ultramafic strains also showed 
co-resistance to Cu, Zn, and Mn. Pal et  al. (2007) also 

examined the soil microflora associated with the rhizo-
sphere of two known Ni hyperaccumulators from the 
Andaman Islands, R. bengalensis and D. gelonioides 
subsp. andamanicum. Of the total 123 microbes (99 bac-
teria and 24 fungi) that were isolated, bacteria were more 
tolerant of Ni than fungi, showing their greater potential 
for Ni tolerance.

In a study focusing on medicinal qualities of wild-har-
vested plants, 32 plant species collected from ultramafic 
outcrops of Sri Lanka were screened for antimicrobial 
properties (Rajakaruna et al. 2002). Of these, 29 species 
belonging to 12 families proved effective against at least 
one microorganism. Photoactivity was also observed 
from extracts of 10 species belonging to 10 families. 
There was no observed correlation between trace ele-
ment hyperaccumulation (Rajakaruna and Bohm 2002) 
and antimicrobial activity.

Ecological aspects
Ultramafic outcrops have long-provided model settings 
for studies on the ecology of plant species and plant com-
munities. Studies range from those investigating aspects 
of the ecology of edaphically specialized plant popula-
tions and plant–plant interactions to those exploring 
factors and mechanisms driving the assembly of plant 
communities (see Harrison and Rajakaruna 2011). Com-
pared to other regions of the world, ecological studies 
on ultramafics of South and Southeast Asia are mostly 
limited to those examining floristics, plant community 
structure, and edaphic-floristic associations.

Vegetation structure and composition
Mount Silam in Sabah, Malaysia, has been extensively 
studied, including the general floristics, forest struc-
ture, hydrology and chemical analysis of tree foliage and 
leaf litter (Proctor et al. 1988a, b, 1989; Bruijnzeel et al. 
1993). The study plots on Mount Silam range from 280 
to 870 masl in elevation, documenting a broad spectrum 
of vegetation changes with altitude. The site is extremely 
species-rich in terms of its tree flora, ranging between 19 
species in a 0.04-ha plot at 870 masl to 104 species in a 
0.4-ha plot at 480 masl (Proctor 1992). Ultramafic-asso-
ciated rainforests on Mount Guiting-Guiting, Sibuyan 
Island, Philippines (Proctor et  al. 1998) and those of 
Mount Silam, Sabah (Proctor et al. 1988a, b) are similar 
in their soil features (Ni, Ca:Mg, and depth) and lack of 
stunted lowland forests. At these locations, small-stat-
ured forests are associated with higher elevations.

On Mount Bloomfield in the western Philippines (Pal-
awan), Proctor et  al. (1999) described a very different 
forest structure from those of Mount Silam and Mount 
Guiting-Guiting. The soil depths on Mount Bloomfield 
are much less compared to these other sites; Bruijnzeel 
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(1990) suggested that drought in the shallow soils is a 
major cause of forest stunting on ultramafics, perhaps in 
association with fire (Proctor et al. 1997). Mount Bloom-
field lacks tall forests and instead is characterised by 
trees less than 18 m tall. No statistical relationship could 
be established between tree height and soil chemistry, 
although Proctor et  al. (1999) did find a direct propor-
tional relationship between maximum tree height and 
soil water retention. The authors indirectly linked soil 
water to fire susceptibility in establishing the particu-
lar vegetation pattern on Mount Bloomfield, one that 
superficially resembles fire-dependent vegetation of New 
Caledonia.

Proctor et  al. (2000a, b) compared vegetation on 
ultramafic soils to those on non-ultramafic (greywacke-
derived) soils in Palawan and found that the species 
richness and diversity of ultramafic and greywacke sites 
were similar. However, the individual species and famil-
ial composition were rather different, with only members 
of the Saxifragaceae occurring on both ultramafic and 
greywacke soils. Trees on the serpentinized peridotite 
had a high proportion of microphyllous leaves, which is 
not a general feature of ultramafic forests in the region. 
Differences in water supply and fire frequencies, in com-
bination with edaphic difference, may contribute to the 
distinct forests overlying these soils (Proctor et al. 1999, 
2000a, b).

Sulawesi and Halmahera in Indonesia have 15,400 and 
8000  km2 of ultramafic outcrops, respectively (van der 
Ent et  al. 2013a). Lateritic soils overlaying the bedrock 
harbor both sclerophyllous ultramafic vegetation and 
more cryptic tropical rainforest, which are nonetheless 
inhabited by a high proportion of endemic flora. Proc-
tor et al. (1994) examined the ultramafic soil–plant rela-
tions of Mount Piapi on Karakelong part of the Talaud 
Islands, North Sulawesi, Indonesia and reported that 
the short stature of the local vegetation is a result of low 
water-holding capacity of the soil, while the unusual 
species assemblage likely results from the soil chemis-
try typical of ultramafic soils. They also documented an 
undescribed Ni-hyperaccumulating species of Rinorea 
from their study site.

Kinabalu Park, Sabah, one of the world’s most spe-
cies-rich hotspots with more than 5000 plant spe-
cies recorded in an area of just 1200  km2, is also 
home to extensive ultramafic exposures (van der Ent 
et al. 2014). Plant diversity on ultramafics of the Park 
decreases with elevation, with a mid-elevation (circum 
1500  masl) ‘hump’ occurring for some plant groups 
(Orchidaceae, Pteridophytes) resulting from the pres-
ence of cloud forests (van der Ent et  al. 2016a). Six 
main vegetation classes with associated soil types 

are described by van der Ent et  al. (2016a), including 
Sub-Alpine Scrub and Graminoid Scrub, both associ-
ated with Hypermagnesic Cambisols (‘hypermagne-
sian soils’), Montane Cloud Forest, associated with 
Cambisols often with accumulation of humus, Mixed 
Dipterocarp Forest, associated with deep Ferralsols 
(‘laterites’), and Pioneer Casuarina Scrub and Mature 
Mixed Casuarina Forest, both associated with Hyper-
magnesic Leptosols. The ‘adverse’ soil chemistry exac-
erbates vegetation stunting but no clear correlation 
between elevation, soil chemistry and plant diversity 
was found, as some of the most ‘adverse’ soils on the 
summit of the entirely ultramafic Mount Tambuyukon 
(2359–2534  masl) had up to 132 species per 250  m2 
(van der Ent et al. 2016a).

Samithri (2015) examined the vegetation commu-
nity composition and patterns at Ussangoda, Sri Lanka’s 
most intensively studied ultramafic outcrop. She found 
a higher diversity of plant species in ‘forest islands’ 
compared to the extensive ‘plains’ characterizing the 
site (Fig.  2c). Although the plains make up over 90% of 
the outcrop area, they only harbor 18 herbaceous spe-
cies belonging to 17 genera and 11 families compared 
to 49 tree, shrub, herb and climber species belonging to 
44 genera and 27 families found in the ‘forest islands.’ 
Although the soil chemical features did not differ sig-
nificantly between sites on the ‘plains’ versus those in the 
‘forest islands,’ soil features such as depth and resulting 
water holding capacity in ‘forest islands’ may favor the 
growth of a wide range of species than on the exposed 
and shallow soils of the ‘plains.’

Studies on bryophytes, lichens, and epiphytes on 
ultramafic outcrops are sparse worldwide (but see Boyd 
et al. 2009; Briscoe et al. 2009; Favero-Longo et al. 2004; 
Rajakaruna et  al. 2012). In South and Southeast Asia, 
such studies are mostly non-existent. However, one 
study from the Philippines (Proctor et al. 2000b) docu-
ments epiphytic plants on trees of ultramafic and adja-
cent greywacke soils. The trees on the greywacke had 
fewer lianas and much less bole bryophyte cover than 
those on the serpentinized peridotite. Forty-one per-
cent of trees on peridotite had >10% bryophyte cover, 
while none of the trees on greywacke soils had >10% 
bryophyte cover. The greywacke soils also hosted sig-
nificantly higher densities of ferns, Cyperaceae spp., 
rattans (Arecaceae: Calamoideae), and Pandanaceae 
spp. compared to ultramafic soils, while ultramafic soils 
harbored significantly more herbaceous and bamboo 
(Poaceae: Bambusoideae) species. Floristic differences 
between the sites were attributed to differences in geo-
chemistry, hydrology, and fire-frequencies (Proctor 
et al. 1999, 2000b).
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Fig. 2 Ultramafic outcrops and vegetation in South and Southeast Asia: a Oil palm estate in Sabah, Malaysia on eroding ultramafic soils. b Road cut 
through strongly serpentinised bedrock in Sabah, Malaysia. c Bare red Ferralsols at Ussangoda in Sri Lanka. d River flowing through an ultramafic 
outcrop in Halmahera, Indonesia. e Extremely stunted sub-alpine vegetation on ultramafic soils in Kinabalu park, Malaysia. f Montane cloud forest 
on ultramafic soils on Mount Silam, Malaysia. g Exceptionally tall lowland mixed dipterocarp forest on ultramafic soils in Sabah, Malaysia (all images 
are by A. van der Ent, except c by Y.A.S. Samithri and g by Isabella Zelano)
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Plant endemism
Ultramafic soils, often with disproportionately high 
numbers of endemic species (Anacker 2011), are prime 
settings to explore the nature of edaphic endemism (Raja-
karuna 2004). In New Caledonia, 2150 species occur on 
ultramafic soils of which 83% are restricted to these soils 
(Jaffré 1992; Jaffré and L’Huillier 2010), whereas in Cuba, 
920 species (approximately one-third of the taxa endemic 
to Cuba) are found exclusively on ultramafic soils (Borhidi 
1992). Similar restrictions and notable floristic associa-
tions are also found on ultramafic outcrops of Mediterra-
nean climates (including California; Alexander et al. 2007; 
Safford et al. 2005), as well as in South Africa/Zimbabwe 
and Australia (Anacker 2011; Brooks 1987).

The restriction of habitat specialists to ultramafic soils 
is generally considered a consequence of  their inherent 
slow growth rates that leads them to being outcompeted 
on more favorable soils (Anacker 2014; Anacker et  al. 
2011; Kay et  al. 2011). Although some growth experi-
ments have shown that habitat specialists can grow faster 
on more nutrient-rich soils (Kruckeberg 1954), spe-
cies from the ultramafic maquis in New Caledonia have 
inherently slow growth, albeit becoming larger under 
more fertile conditions (Jaffré 1980). Table  3 lists the 
countries within the South and Southeast Asian region 
with ultramafic floras, including the number of ultra-
mafic-associated species documented and the number of 
ultramafic endemics described in each country.

In Sabah, Malaysia, Borneodendron aenigmaticum 
(Euphorbiaceae) is one of the few large rainforest trees 
restricted to ultramafic soils (Proctor et  al. 1988a). Van 
der Ent and Wood (2012, 2013) describing orchid species 
associated with ultramafics in Sabah, Malaysia, docu-
mented many endemic species (Orchidaceae) restricted 
to narrow valleys with steep slopes, dominated by Gym-
nostoma sumatranum (Casuarinaceae) and Ceuthos-
toma terminale (Casuarinaceae). Further, van der Ent 
et al. (2015b) show habitat partitioning among ultramafic 
endemic Nepenthes species (Nepenthaceae) of Mount 
Kinabalu and Mount Tambuyukon, with distinct habitats 
and elevation ranges for the different Nepenthes taxa. Eri-
obotrya balgooyi (Rosaceae) was described as a new spe-
cies restricted to ultramafic soils on a hill near the eastern 
ridge of Mount Kinabalu and on the nearby Mount Tam-
buyukon in Sabah, Malaysia (Wong and van der Ent 
2014). The importance of scientific exploration of the 
ultramafics of Southeast Asia cannot be stressed enough; 
a survey on the ultramafic Mount Guiting-Guiting, Phil-
ippines (Argent et al. 2007) also led to the discovery of a 
new species, Lobelia proctorii (Campanulaceae).

Sri Lanka’s ultramafic outcrops and their flora, com-
pared with ultramafic floras of Southeast Asia and Aus-
tralia-Pacific region (van der Ent et  al. 2015c, d), have 

received relatively little attention partly because they do 
not harbor any endemic species nor many metal hyperac-
cumulators (Chathuranga et  al. 2015). All species so far 
documented from the ultramafic outcrops of Sri Lanka 
also have non-ultramafic populations, and it is unclear 
whether the ultramafic populations are physiologically 
distinct (i.e. ecotypes).

Cross‑kingdom interactions
Edaphically stressful substrates, like ultramafic soils, pre-
sent plants with challenges that differ from more ‘benign’ 
substrates. Growing under such stress, ultramafic plants 
will likely encounter other organisms (herbivores, patho-
gens, beneficial insects and pathogens) that are also able 
to tolerate some of the same stressors affecting the plants 
(Strauss and Boyd 2011). There is evidence to suggest 
that pressures from enemies will be greater on edaphi-
cally stressful substrates than on normal soils (Strauss and 
Cacho 2013). Additionally, the enriched concentrations of 
certain trace elements, such as nickel, found in ultramafic 
soils may provide plants with opportunities for elemental 
defence (Boyd 2014). A significant body of research exists 
on plant–other biota interactions on ultramafic soils from 
temperate and Mediterranean climes, including studies on 
elemental defence (Boyd 2009), defence against pathogens 
(Hörger et  al. 2013; Springer 2009), herbivory (Lau et  al. 
2008), mycorrhizal associations (Southworth et  al. 2014), 
plant–pollinator interactions (Meindl et al. 2013; Wolf and 
Thorp 2011), and seed dispersal (Spasojevic et  al. 2014). 
However, such studies are minimal in tropical Asia.

Herbivory
In the only known published study on herbivory in ultra-
mafic ecosystems in the region, Proctor et  al. (2000a) 
found that the percentage of leaf area consumed was 
similar for plants found on and off of ultramafic soils on 
Mount Bloomfield, Palawan (Philippines), although the 
actual leaf area consumed was greater for the ultramafic 
forest as it had plants with larger leaves. There was no 
relationship between herbivory and leaf elemental chem-
istry; even the metal-accumulating taxa were attacked 
by herbivores. Proctor et  al. (2000a) speculate that the 
gall-forming and leaf-mining insects must be tolerant of 
nickel as they spend their entire juvenile stage in the leaf 
tissue.

Recent work by van der Ent and Mulligan (2015) show 
Ni accumulation in various parts of Ni hyperaccumula-
tor plants occurring in Sabah, Malaysia, with the high-
est Ni concentration recorded in the phloem tissue (up 
to 7.9% in R. bengalensis) and phloem sap (up to 16.9% 
in Phyllanthus balgooyi); Ni localization in phloem tissue 
is visible by the bright green coloration in field-collected 
samples (Fig. 3b, f ). The discovery of toxic levels of Ni in 
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Fig. 3 Nickel hyperaccumulator plants in South and Southeast Asia: a Phyllanthus balgooyi (Phyllanthaceae) in Sabah, Malaysia is a small under-
storey tree. b Phloem sap exuding from Phyllanthus balgooyi contains up to 20 wt% Ni. c Knema matanensis (Myristicaceae) in Sulawesi, Indonesia; 
d Rinorea bengalensis (Violaceae) can be locally dominant in lowland forest, in Sabah, Malaysia. e Dichapetalum gelonioides subsp. tuberculatum 
(Dichapetalaceae) from Mount Silam, Malaysia. f Main stem of Dichapetalum gelonioides subsp. tuberculatum showing its Ni-rich phloem tissue 
with colorimetric response in dimethylglyoxime test-paper. g Sarcotheca celebica (Oxalidaceae) from Sulawesi, Indonesia. h Psychotria sarmentosa 
(Rubiaceae) is the only known Ni hyperaccumulator in South and Southeast Asia that is a climber (all images are by A. van der Ent, except c, g are by 
A. Tjoa, Tadulako University, Indonesia)
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the phloem tissue suggests that the increased Ni in the 
phloem provides a defence against phloem-sap feeding 
insects, pathogens, and other herbivores (Boyd 2014; 
Hanson et  al. 2004). However, Geometric moth  larvae 
(Erebidae: Erebinae:Poaphilini) were found feeding on 
the leaves of the Ni hyperaccumulator P. balgooyi, fur-
thermore  aphids were found feeding on Phyllanthus cf. 
securinegioides (van der Ent et al. 2015f ).

Mycorrhizal associations
Pisolithus tinctorius (Sclerodermataceae), an ectomycor-
rhizal fungus, is found in the rhizosphere of Eucalyptus 
urophylla (Myrtaceae) from ultramafic soils in the Phil-
ippines, New Caledonia, and Western Australia (Aggan-
gan et  al. 1998). Pisolithus tinctorius was cultured with 
E. urophylla to determine the effects of Cr and Ni on 
the fungal growth rate. The fungus concentrates metals 
in the extramatrical hyphae and extra-hyphal slime and 
is particularly tolerant of high concentrations of Ni and 
Cr. There was geographic variation in terms of metal 
tolerance in the fungus, with the New Caledonian iso-
late outperforming both the Australian and the Philip-
pines isolates. The Philippines isolate grew well on agar 
in the presence of Cr up to 2000 µmol L−1 and Ni up to 
200 µmol L−1, but formed fewer mycorrhizae in vitro and 
in  vivo than its counterparts from New Caledonia and 
Western Australia.

Soil invertebrates
A study comparing termite assemblages on ultramafic-
derived forest soils to those on non-ultramafic soils in 
Borneo, Malaysia shows that ultramafic sites have low 
species density (<35%), low relative abundance (<30%), 
a virtual absence of soil-feeders, significantly fewer 
wood-feeders, and a near-absence of species of Rhinoter-
mitidae, Amitermes-group, Termes-group, Pericaprit-
ermes-group and Oriensubulitermes-group (Jones et  al. 
2010). The authors suggest that metal toxicity, high pH 
disrupting gut physiology, metal poisoning of essential 
microbiota in the termite gut, and metal bioaccumula-
tion by gut microbes with subsequent poisoning of the 
termite host, as possible reasons for the depauperate ter-
mite communities on ultramafic soils.

A study on the patterns of Oribatid mite communi-
ties in relation to elevation and geology on the slopes of 
Mount Kinabalu, Sabah, Malaysia, shows that the density 
and morphospecies richness of Oribatid mites are greater 
in non-ultramafic soils than in the ultramafic soils at each 
of the same elevations (Hasegawa et al. 2006). The density 
and richness of Oribatid mites decreased with elevation 
on both substrates, but the effects of elevation on their 
density in non-ultramafic soil were less significant than 
in the ultramafic substrate.

An investigation of the invertebrate communities in 
forest litter and soil on Mount Guiting-Guiting in the 
Philippines, shows that ultramafic soils, even at higher 
elevations, were not poor in soil invertebrates, including 
Oligochaeta (Thomas and Proctor 1997), similar to ear-
lier findings on Mount Silam, Sabah (Leakey and Proctor 
1987).

Physiology and genetics
There is considerable interest in understanding the physi-
ology and the underlying genetic basis for traits conferring 
adaptation to ultramafic soils (Bratteler et  al. 2006; Palm 
and Van Volkenburgh 2014; von Wettberg and Wright 
2011; Wu et al. 2008). The advent of novel molecular meth-
ods has provided unique approaches to exploring stress 
tolerance (Selby et  al. 2014; Visioli and Marmiroli 2013) 
and ultramafic-associated plants will continue to provide 
model systems for such investigations (Arnold et al. 2016; 
von Wettberg et al. 2014). While these advances have not 
yet been made in tropical Asia, the region provides numer-
ous opportunities for investigating the physiological and 
genetic aspects of adaptation to ultramafic soils. To date, 
much of the research in South and Southeast Asia has 
focused on discovering new hyperaccumulating plant spe-
cies from ultramafic soils in the region.

Trace element hyperaccumulation
Plants found on ultramafic soils have long-been recog-
nized as model systems to explore trace element hyper-
accumulation (Gall and Rajakaruna 2013). There are well 
over 450 Ni hyperaccumulator plant species globally, all 
occurring on ultramafic soils (van der Ent et  al. 2013c). 
Ultramafic associated plants are known to hyperaccumu-
late cobalt (Co) and Cu (>300 μg g−1 in their dry leaf tis-
sue), and Ni (>1000  μg  g−1 in their dry leaf tissue). For 
recent reviews of trace element hyperaccumulation, see 
Reeves (2003), Krämer (2010), van der Ent et al. (2013c, 
2015e) and Pollard et al. (2014). Table 4 lists documented 
hyperaccumulator plants from the South and South-
east Asia region, listing the element hyperaccumulated, 
country of discovery, and relevant references. Figure  3 
documents some of the nickel hyperaccumulator plants 
discovered from ultramafic soils in parts of South and 
Southeast Asia.

In one of the earliest geoecological studies of the 
region, Wither and Brooks (1977) and Brooks et  al. 
(1977b) analysed herbarium samples of plants originat-
ing from Obi Island (North Moluccas). They identi-
fied Myristica laurifolia var. bifurcata (Myristicaceae), 
Planchonella oxyhedra (Sapotaceae), and Trichosper-
mum kjellbergii (Malvaceae) as hyperaccumulators of 
Ni. The authors then analysed Ni concentrations in her-
barium specimens of T. kjellbergii and P. oxyhedra from 
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Fig. 4 Ultramafic edaphic endemics from South and Southeast Asia: a The monotypic tree Borneodendron aenigmaticum (Euphorbiaceae) is 
endemic to Sabah (Malaysia) on ultramafic soils in the lowlands. b The world’s largest carnivorous pitcher plant, Nepenthes rajah (Nepenthaceae) 
is endemic to Kinabalu Park in Sabah where it occurs in the montane zone. c The epiphytic or lithophytic orchid Porpax borneensis (Orchidaceae) 
is restricted to ultramafic outcrops in Sabah, Malaysia. d The recently described Begonia moneta (Begoniaceae) occurs lithophytically in lowland 
ultramafic forest in Sabah, Malaysia. e Scaevola verticillata (Goodeniaceae) is endemic to the summit of the ultramafic Mount Tambukon in Sabah, 
Malaysia. f The carnivorous Drosera ultramafica (Droseraceae) is endemic to a limited number of mountainous ultramafic outcrops in Malaysia and 
the Philippines. g Rhododendron baconii (Ericaceae) is another hyper-endemic restricted to Kinabalu Park, Sabah, Malaysia. h The specific epithet of 
Pittosporum peridoticola (Pittosporaceae) indicates its habitat is on ultramafic soils in Sabah, Malaysia (all images are by A. van der Ent)
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throughout their range in Southeast Asia and Oceania. 
The findings confirmed previously known ultramafic 
areas in Sulawesi and Indonesian New Guinea, as well as 
one in Ambon (South Moluccas) which was not docu-
mented on geological maps. Their suspicions about the 
substrate were confirmed by a 1994 geological study that 
mapped peridotite and serpentinite outcrops in both 
Ambon and Seram (Linthout and Helmers 1994). A more 
recent study in Soroako, Sulawesi, examined leaf tissue 
from 23 plant species from former Ni mining sites in 
search of hyperaccumulator plants (Netty et al. 2012). As 
a result, Sarcotheca celebica (Oxalidaceae) was confirmed 
as a Ni hyperaccumulator, with 1039 µg g−1 Ni in dry leaf 
tissue.

In a study describing the general influence of the ultra-
mafic geochemistry on growth patterns of plants overly-
ing two Malaysian massifs, the Bukit Rokan and Petasih 
along the Bentong-Raub suture zone on the Peninsula, 
Tashakor et al. (2013) document that the serpentinite of 
the area is strongly weathered and gives rise to charac-
teristic red lateritic soils (Ferralsols). They point out that 
the greatest physiological stress experienced by plants 
growing on ultramafic soils is due to the low Ca: Mg ratio 
and the generally low available nutrients, and not due to 
potentially phytotoxic elements present in the soil, which 
are, for the most part, not in a plant-available form.

In a study of the Bela Ophiolite in the Wadh area of 
Balochistan, Pakistan, Naseem et  al. (2009) discovered 
Pteropyrum olivieri (Polygonaceae) in a localized popu-
lation over ultramafic soils. Although the plant did not 
hyperaccumulate, it had moderate concentrations of Ni, 
Co, and Cr in its tissues, typical of most plants growing 
on ultramafic soils.

The ultramafics of Malaysia and Indonesia have 
received considerable attention with regard to taxa with 
high metal-accumulating behavior. A chemical analysis 
of leaf litter from trees growing on ultramafics in Sabah, 
Malaysia (Proctor et al. 1989) confirmed that trees grow 
at low foliar nutrient concentrations and can concen-
trate Ca in their leaf tissue. Leaf litter showed an aver-
age Ca:Mg ratio as well as a high level of Ni, suggesting 
that senescence may act as a way of excreting excess Ni. 
From analysis of leaf litter, they found that Shorea ten-
uiramulosa (Dipterocarpaceae) and an unidentified spe-
cies of Syzygium (Myrtaceae) accumulated Ni and Mn, 
respectively, with 1000 µg g−1 Ni and 13,700 µg g−1 Mn 
dry leaf weight. Proctor et al. (1994) also reported a yet to 
be named Ni-hyperaccumulating species of Rinorea from 
Mt Piapi on Karakelong Island, northeast of Sulawesi in 
Indonesia with up to 1830 µg g−1 foliar Ni.

In an analysis of 51 herbarium specimens from both 
Malaysia and Indonesia, including from Mount Kina-
balu (Sabah), Soroako and Malili (Sulawesi) and Yapen 

Island, Reeves (2003) found high Ni values in Phyllan-
thus insulae-japen (Phyllanthaceae), which had been col-
lected once in 1961, and in R. bengalensis, Brackenridgea 
palustris subsp. kjellbergii (Ochnaceae), Glochidion spp. 
(Phyllanthaceae), and two species of Psychotria (Rubi-
aceae) which could not be identified to species level. One 
ultramafic subspecies of D. gelonioides was identified as 
a Ni hyperaccumulator (subsp. tuberculatum), whereas 
another subspecies was confirmed as a Zn hyperaccu-
mulator on non-ultramafic soils (subsp. pilosum) (Baker 
et al. 1992).

In recent studies of Mt. Kinabalu, van der Ent et  al. 
(2013b, 2015a, f ) discovered nine species of Ni hyper-
accumulators from the flora of Kinabalu Park in Sabah, 
Malaysia. Previously known hyperaccumulators from the 
region included R. bengalensis (Brooks and Wither 1977a, 
b), Rinorea javanica (Brooks et  al. 1977a), P. balgooyi 
(Phyllanthaceae; Hoffmann et  al. 2003), D. gelonioides 
(Baker et  al. 1992), Psychotria cf. gracilis (Rubiaceae; 
Reeves 2003), and Shorea tenuiramulosa (Proctor et  al. 
1989). Van der Ent et  al. (2013b, 2015f) added sev-
eral more Ni hyperaccumulators, including Actephila 
alanbakeri (Cleistanthus sp. nov. in the original report) 
(Phyllanthaceae; 11,520  µg  g−1), Flacourtia kinabal-
uensis (Salicaceae; 7280  µg  g−1), Glochidion mindorense 
(Phyllanthaceae; 2280  µg  g−1), Kibara coriacea (Mon-
imiaceae; 5840  µg  g−1), Mischocarpus sundaicus (Sap-
indaceae) (4425  µg  g−1), Phyllanthus cf. securinegioides 
(Phyllanthaceae; 23,300  µg  g−1), Psychotria sarmentosa 
(Rubiaceae; 24,200  µg  g−1), Walsura pinnata (Meli-
aceae; 4580 µg g−1), and Xylosma luzoniensis (Salicaceae; 
5360 µg g−1) to the list, thereby documenting the highest 
number of Ni hyperaccumulators (15) known from any 
region within South and Southeast Asia.

In an effort to understand the factors contributing to Ni 
hyperaccumulation in Sabah, Malaysia, van der Ent et al. 
(2016b) examined the soil chemistry associated with 18 
Ni hyperaccumulator plant species, comparing the chem-
istry of ultramafic soils where Ni hyperaccumulators 
were absent. The results showed that Ni hyperaccumula-
tors are restricted to circum-neutral soils with relatively 
high phytoavailable Ca, Mg, and Ni. They hypothesized 
that either hyperaccumulators excrete large amounts of 
root exudates, thereby increasing Ni phytoavailability 
through intense rhizosphere mineral weathering, or that 
they have extremely high Ni uptake efficiency, thereby 
severely depleting Ni and stimulating re-supply of Ni via 
diffusion from labile Ni pools. Their results, however, 
tend to favor the latter hypothesis.

Nuclear microprobe imaging (micro-PIXE) shows 
that in P. balgooyi collected from ultramafic soils in 
Sabah, Malaysia, Ni concentrations were very high in the 
phloem of the stems and petioles, while in the leaves Ni 
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was enriched in the major vascular bundles (Mesjasz-
Przybylowicz et al. 2015). The preferential accumulation 
of Ni in the vascular tracts suggests that Ni is present in 
a metabolically active form. This research is important as 
the elemental distribution of P. balgooyi differs from that 
of many other Ni hyperaccumulators from temperate and 
Mediterranean regions where Ni is preferentially accu-
mulated in leaf epidermal cells (Bhatia et al. 2004; Broad-
hurst et al. 2004; Tylko et al. 2007; Baklanov 2011).

In the Philippines, much of the ultramafic vegetation 
remains underexplored (Fernando et  al. 2008; but see 
Baker et al. 1992; Fernando et al. 2013; Proctor et al. 1998, 
2000a, b). Studies to date have revealed new Ni hyperac-
cumulators (e.g. Fernando and Rodda 2013; Hoffmann 
et  al. 2003), including Breynia cernua (Phyllanthaceae; 
Gotera et al. 2014) and P. balgooyi, P. erythrotrichus, and 
P. securinegioides (Phyllanthaceae; Hoffmann et al. 2003; 
Quimado et al. 2015). A recent study described Rinorea 
niccolifera (Violaceae) as a novel taxon and Ni hyperac-
cumulator from Luzon Island, Philippines (Fernando 
et al. 2014).

Although in Sri Lanka’s ultramafic outcrops are not 
associated with many Ni hyperaccumulator species, 
unlike those in Sabah, Malaysia (van der Ent et al. 2015a), 
several plant species currently found at Ussangoda 
hyperaccumulate Ni (see citations in Chathuranga et  al. 
2015; Samithri 2015). Notable in this regard are Evol-
vulus alsinoides (Convolvulaceae), Hybanthus enneas-
permus (Violaceae), Flacourtia indica (Flacourtiaceae), 
Olax imbricata (Olacaceae), Toddalia asiatica (Ruta-
ceae), Euphorbia heterophylla (Euphorbiaceae), Verno-
nia cinerea (Asteraceae) and Crotalaria sp. (Fabaceae). 
Senevirathne et al. (2000) also document Striga euphra-
sioides (Orobanchaceae), Cassia mimosoides (Fabaceae), 
and Blumea obliqua (Asteraceae) from Ussangoda as 
hyperaccumulating Ni, although subsequent studies have 
failed to confirm this earlier report. Five Cu hyperaccu-
mulators [Geniosporum tenuiflorum (Lamiaceae; now 
Ocimum tenuiflorum), Clerodendrum infortunatum 
(Lamiaceae), Croton bonplandianus (Euphorbiaceae), 
Waltheria indica (Malvaceae), and Tephrosia villosa 
(Fabaceae)] are also found on ultramafic outcrops in Sri 
Lanka (Rajakaruna and Bohm 2002). Based on revised 
criteria for Cu hyperaccumulation (van der Ent et  al. 
2013c), Calotropis gigantea, Carissa spinarum, Cassia 
auriculata, Abutilon indicum, and Phyllanthus sp. undet., 
analysed by Rajakaruna and Bohm (2002), now also 
qualify as hyperaccumulators of Cu (Table  4). Although 
Cu hyperaccumulation is not a common phenomenon 
among ultramafic plants, a recent study has also docu-
mented unusual Cu uptake in a number of ultramafic 
plants in Malaysia and Brazil (van der Ent and Reeves 
2015).

Evolutionary aspects
Ultramafic outcrops often harbor populations which are 
morphologically and physiologically distinct from those 
found on non-ultramafic soils. Such intraspecific vari-
ation, especially with respect to functionally important 
traits, is common in many ultramafic taxa worldwide 
(O’Dell and Rajakaruna 2011). Such variation can result 
from both local adaptation (i.e., ecotypic differentiation; 
Sambatti and Rice 2006; Turner et al. 2010) or phenotypic 
plasticity (Murren et al. 2006; Wu et al. 2010), and must 
be examined on a case-by-case basis. Suitable methods 
of examination include reciprocal or unilateral trans-
plant experiments and common garden studies (Wright 
and Stanton 2011), as well as functional genomic and 
proteomic approaches (Selby et  al. 2014; von Wettberg 
et  al. 2014; von Wettberg and Wright 2011). Detecting 
intraspecific variation is the first step toward any inves-
tigation on the causes and consequences of adaptive evo-
lution. Populations exhibiting intraspecific variation on 
ultramafic and non-ultramafic soils have led to numer-
ous studies of speciation (Anacker 2014; Kay et al. 2011) 
and phylogenetic investigations (Anacker 2011; Anacker 
et  al. 2011; Anacker and Harrison 2012), advancing our 
understanding of evolutionary and ecological theory 
(Harrison and Rajakaruna 2011). Molecular phylogenetic 
methods provide a unique protocol for testing and estab-
lishing species relationships, helping to shed light on how 
ultramafic endemics evolve (Baldwin 2005). The analysis 
of phylogenies for 23 genera from California shows that 
ultramafic endemics exhibit few transitions out of the 
endemic state (Anacker et al. 2011), suggesting that adap-
tation to ultramafics and subsequent diversification can 
lead to an evolutionary “dead end”. But ultramafic line-
ages may not always represent evolutionary “dead ends” 
and may have the potential to further diversify via inde-
pendent polyploidization and hybridization, even provid-
ing a pathway to radiate off ultramafic soils (Kolář et al. 
2012).

Compared to these studies from other regions of the 
world, there is little information on evolutionary aspects 
of plants associated with ultramafic soils in South and 
Southeast Asia. A recent study from Sri Lanka shows 
that the ultramafic and non-ultramafic populations of 
Fimbristylis ovata (Cyperaceae) may be locally adapted 
to their respective soils (Chathuranga et  al. 2015). The 
ultramafic population translocated significantly more 
Ni from its roots to shoots (translocation factor 0.43) 
than the non-ultramafic population (translocation factor 
0.29). However, additional studies are required to deter-
mine whether the populations of F. ovata, or other spe-
cies, including those hyperaccumulating metals such as 
Ni and Cu, deserve ecotypic recognition. Several ultra-
mafic-associated taxa in Sri Lanka might benefit from 
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Table 4 Unusual foliar elemental accumulation (Ni, Co, Cu, Mn or Zn—maximum recorded values in  μg  g−1) in  plants 
from South and Southeast Asia

Family Species Life-form Locality Ni Cu Co Mn Zn Reference

Acanthaceae Daedalacanthus 
suffruticosus

Shrub India 1235–1862 – – – – Datta et al. (2015)

Acanthaceae Ptyssiglottis cf. 
fusca

Herb Sabah, Malaysia 1160 – – – Van der Ent et al. 
(2015f )

Amaranthaceae Aerva scandens Herb Sulawesi, Indo-
nesia

– 395 – – – Brooks et al. (1978)

Amaranthaceae Cyathula prostrata Herb Sulawesi, Indo-
nesia

– 553 – – – Brooks et al. (1978)

Apocynaceae Calotropis gigantea Climber Sri Lanka – 583 – – – Rajakaruna and 
Bohm (2002)

Apocynaceae Carissa spinarum Climber Sri Lanka – 702 – – – Rajakaruna and 
Bohm (2002)

Asteraceae Vernonia actaea Herb Sulawesi, Indo-
nesia

– 300 – – – Brooks et al. (1978)

Asteraceae Vernonia cinerea Herb Sri Lanka 1026 – – – – Samithri (2015)

Chrysobalanaceae Licania splendens Shrub Zambales, Philip-
pines

2728 – – – – Fernando et al. 
(2013)

Convolvulaceae Evolvulus alsinoides Herb Sri Lanka 1478 – – – Rajakaruna and 
Bohm (2002)

Dichapetalaceae Dichapetalum 
gelonioides 
subsp. pilosum

Climber/shrub Sabah, Malaysia – – – – 7000 Baker et al. (1992)

Dichapetalaceae Dichapetalum 
gelonioides 
subsp. sumatra-
num

Shrub SE Asia – – – – 30,000 Baker et al. (1992)

Dichapetalaceae Dichapetalum 
geloniodes 
subsp. tubercu-
latum

Shrub Malaysia and 
Philippines

26,600 – – – – Baker et al. (1992)

Dichapetalaceae Dichapetalum 
gelonioides 
subsp. anda-
manicum

Shrub Andaman Islands, 
India

3160; 9740–36,100 – – – – Brooks (1987), Datta 
et al. (2015)

Dipterocarpaceae Shorea tenuiramu-
losa

Tree Sabah, Malaysia 1790 – – – – Proctor et al. (1988a, 
b), Van der Ent 
et al. (2015a, b, c, 
d, e, f, g)

Euphorbiaceae Croton bonplan-
dianus

Tree Sri Lanka – 2163 – – – Rajakaruna and 
Bohm (2002)

Euphorbiaceae Euphorbia thymi-
folia

Shrub Sri Lanka 1074 – – – – Samithri (2015)

Fabaceae Cassia auriculata Shrub Sri Lanka – 885 – – – Rajakaruna and 
Bohm (2002)

Fabaceae Dalbergia beccarii Shrub Sabah, Malaysia 2623 – – – – Van der Ent and 
Reeves (2015)

Fabaceae Tephrosia villosa Herb Sri Lanka – 1858 – – – Rajakaruna and 
Bohm (2002)

Lamiaceae Clerodendrum 
infortunatum

Herb Sri Lanka – 2278 – – – Rajakaruna and 
Bohm (2002)

Lamiaceae Coleus scutellari-
oides

Herb Sri Lanka – 500 – – – Brooks et al. (1978)

Lamiaceae Ocimum tenuiflo-
rum

Herb Sri Lanka – 2266 – – – Rajakaruna and 
Bohm (2002)

Loganiaceae Strychnos anda-
manensis

Climber India 2606–6893 – – – – Datta et al. (2015)

Loganiaceae Strychnos minor Climber India 3220–10,214 – – – – Datta et al. (2015)
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Table 4 continued

Family Species Life-form Locality Ni Cu Co Mn Zn Reference

Loganiaceae Strychnos wal-
lichiana

Climber India 2924–15,630 – – – – Datta et al. (2015)

Malvaceae Abutilon indicum Shrub Sri Lanka – 915 – – – Rajakaruna and 
Bohm (2002)

Malvaceae Waltheria indica Shrub Sri Lanka – 1504 – – – Rajakaruna and 
Bohm (2002)

Meliaceae Walsura mono-
phylla

Tree Malaysia and 
Philippines

7090 – – – – Baker et al. (1992)

Meliaceae Walsura pinnata Tree SE Asia 4580 – – – – Van der Ent et al. 
(2015f )

Monimiaceae Kibara coriacea Tree SE Asia 5840 – – – – Van der Ent et al. 
(2015f )

Moraceae Ficus brevicuspis Tree India 28,322–30,564 – – – – Datta et al. (2015)

Myristicaceae Knema matanensis Tree Indonesia 5000 – – – – Van der Ent et al. 
(2013a)

Myristicaceae Myristica laurifolia 
var. bifurcata

Tree Indonesia 1100 – – – Wither and Brooks 
(1977)

Myrtaceae Decaspermum 
blancoi

Shrub Zambales, Philip-
pines

1996 – – – Fernando et al. 
(2013)

Ochnaceae Brackenridgea 
palustris subsp. 
foxworthyi

Shrub Philippines 7600 – – – – Baker et al. (1992)

Ochnaceae Brackenridgea 
palustris subsp. 
kjellbergii

Tree Sulawesi, Indo-
nesia

1440 – – – – Reeves (2003)

Ochnaceae Ochna integerrima Tree India 2465–5210 – – – – Datta et al. (2015)

Olacaceae Olax imbricata Tree Sri Lanka 1082 – – – – Samithri (2015)

Oxalidaceae Sarcotheca celebica Tree Indonesia 1000 – – – – Van der Ent et al. 
(2013a, b, c)

Papilionaceae Cassia sophera Shrub Sulawesi, Indo-
nesia

– 333 – – – Brooks et al. (1978)

Phyllanthaceae Actephila alan-
bakeri

Shrub Sabah, Malaysia 11,520 – – – – Van der Ent et al. 
(2016c)

Phyllanthaceae Aporosa chalaro-
carpa

Tree SE Asia 1560 – – – – Van der Ent et al. 
(2015f )

Phyllanthaceae Baccaurea lanceo-
lata

Tree SE Asia 1450 – – – – Van der Ent et al. 
(2015f )

Phyllanthaceae Breynia cernua Shrub Zambales, Philip-
pines

3573 – – – – Gotera et al. (2014)

Phyllanthaceae Cleistanthus sp. 1 Tree Sabah, Malaysia 2110 – – – – Van der Ent et al. 
(2015f )

Phyllanthaceae Glochidion aff. 
acustylum

Tree Sulawesi, Indo-
nesia

6060 – – – – Reeves (2003)

Phyllanthaceae Glochidion brun-
neum

Tree SE Asia 6200 – – – – Van der Ent et al. 
(2015f )

Phyllanthaceae Glochidion cf. 
lanceisepalum

Tree Sabah, Malaysia 3270 – – – – Van der Ent et al. 
(2015f )

Phyllanthaceae Glochidion cf. 
mindorense

Tree SE Asia 2280 – – – – Van der Ent et al. 
(2015f )

Phyllanthaceae Glochidion cf. 
rubrum

Tree SE Asia 7000 – – – – Van der Ent et al. 
(2015f )

Phyllanthaceae Glochidion cf. 
sericeum

Tree Sabah, Malaysia 2190 – 1310 – – Van der Ent et al. 
(2015f ); Van der 
Ent (unpublished) 

Phyllanthaceae Glochidion sp. 
‘bambangan’

Tree Sabah, Malaysia 16,700 – – – – Van der Ent et al. 
(2015f )
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further observations and additional greenhouse studies 
to determine whether the ultramafic-associated popula-
tions are genetically distinct and are worthy of ecotypic 
recognition (Rajakaruna and Bohm 2002). These taxa 

include several Ni-accumulating and -hyperaccumulat-
ing species, particularly Hybanthus enneaspermus (Viol-
aceae), Evolvulus alsinoides (Convolvulaceae), Crotalaria 
sp. (Fabaceae), Desmodium triflorum (Fabaceae) and 

Table 4 continued

Family Species Life-form Locality Ni Cu Co Mn Zn Reference

Phyllanthaceae Glochidion sp. 
‘nalumad’

Tree Sabah, Malaysia 9000 – – – – Van der Ent et al. 
(2015f )

Phyllanthaceae Phyllanthus 
balgooyi

Tree Malaysia and 
Philippines

8610 – – – – Hoffmann et al. 
(2003), Mesjasz-
Przybylowicz et al. 
(2015)

Phyllanthaceae Phyllanthus eryth-
rotrichus

Shrub Zambales, Philip-
pines

17,520 – – – – Quimado et al. 
(2015)

Phyllanthaceae Phyllanthus securi-
negioides

Shrub Sabah, Malaysia 23,300 – – – – Baker et al. (1992), 
Van der Ent et al. 
(2015f )

Phyllanthaceae Phyllanthus sp. 
undet.

Shrub Sri Lanka – 821 – – – Rajakaruna and 
Bohm (2002)

Piperaceae Peperomia pel-
lucida

Shrub Sulawesi, Indo-
nesia

– 300 – – – Brooks et al. (1978)

Rubiaceae Psychotria cf. 
gracilis

– Sabah, Malaysia 10,590 – – – – Reeves (2003)

Rubiaceae Psychotria sarmen-
tosa

Climber Sabah, Malaysia 24,200 – – – – Van der Ent et al. 
(2015f )

Rubiaceae Psychotria sp. 
undet.

– Sulawesi, Indo-
nesia

1820 – – – – Reeves (2003)

Rubiaceae Urophyllum cf. 
macrophyllum

Herb Sabah, Malaysia – – – 10,464 – Van der Ent and 
Reeves (2015)

Salicaceae Flacourtia indica Tree Sri Lanka 1165 – – – – Samithri (2015)

Salicaceae Flacourtia kinabal-
uensis

Tree Sabah, Malaysia 7280 – – – – Van der Ent et al. 
(2015f )

Salicaceae Xylosma luzonensis Tree SE Asia 5360 – – – – Van der Ent et al. 
(2015f )

Sapindaceae Mischocarpus 
sundaicus

Tree SE Asia 4425 – – – Van der Ent et al. 
(2015f )

Sapotaceae Planchonella 
obovata

Tree Zambales, Philip-
pines

1005 – – – – Fernando et al. 
(2013)

Sapotaceae Planchonella 
oxyedra

Tree Obi Island, Indo-
nesia

19,600 – – – – Wither and Brooks 
(1977)

Tiliaceae Trichospermum 
kjellbergii

Tree Indonesia 3770 – – – – Wither and Brooks 
(1977)

Urticaceae Laportea ruderalis Herb Sulawesi, Indo-
nesia

– 600 – – – Brooks et al. (1978)

Verbenaceae Callicarpa sp. 
undet.

Shrub Zambales, Philip-
pines

1052 – – – – Fernando et al. 
(2013)

Violaceae Hybanthus enneas-
permus

Shrub Sri Lanka 1862 – – – – Rajakaruna and 
Bohm (2002)

Violaceae Rinorea benga-
lensis

Tree S & SE Asia and 
Australia

2723–18,840 – – – – Brooks and Wither 
(1977); Datta et al. 
(2015) 

Violaceae Rinorea javanica Tree SE Asia 9680 – – – – Brooks and Wither 
(1977)

Violaceae Rinorea niccolifera Shrub Luzon Island, 
Philippines

18,388 – – – – Fernando et al. 
(2014)

Violaceae Rinorea sp. nov. Shrub Talaud Island, 
Indonesia

1830 – – – – Proctor et al. (1994)
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Fimbristylis sp. (Cyperaceae), all of which show detect-
able phenotypic differences between ultramafic and non-
ultramafic populations. Studies exploring causes and 
consequences of phenotypic differences between popula-
tions found on and off ultramafic soils can add much to 
our understanding of the origins of ultramafic specialists 
in the South and Southeast Asia region.

Phytotechnologies
The use of trace element hyperaccumulators to clean up 
polluted sites, i.e. phytoremediation, is gaining recogni-
tion as a viable green technology (Neilson and Rajakaruna 
2014). Phytoremediation is based on the premise that 
plants which remove selected pollutants from the soil 
and translocate them to their above-ground biomass can 
then be harvested and disposed of through incineration 
or elemental recovery, a process known as phytomining 
(Chaney et al. 2014; van der Ent et al. 2015g). Ultramafic 
plants in the genera Alyssum (Brassicaceae), Streptanthus 
(Brassicaceae), Noccaea (Brassicaceae), and Berkheya 
(Asteraceae) have been used in phytoremediation and 
phytomining of Ni-enriched ultramafic sites in temperate 
and Mediterranean regions (Ho et  al. 2013; Morel et  al. 
2006; Gall and Rajakaruna 2013; Sheoran et al. 2009; van 
der Ent et  al. 2015g). Given the large number of hyper-
accumulator species currently known from tropical Asia 
(Gall and Rajakaruna 2013; Reeves 2003), there should be 
considerable interest in using these unique plants in the 
remediation of regional sites contaminated with metal 
and metalloid pollutants.

Phytoremediation and phytomining
Bandara et  al. (2017) investigated the effect of biochar 
and fungal-bacterial co-inoculation on soil enzymatic 
activity and immobilization of heavy metals in soil col-
lected from an ultramafic outcrop in Sri Lanka. The 
addition of biochar to ultramafic soil immobilized heavy 
metals and decreased soil enzymatic activities while the 
addition of microbial inoculants improved plant growth 
by mitigating heavy metal toxicity and enhancing soil 
enzymatic activities. Additional studies from Sri Lanka 
confirm the importance of (i) bacterial-fungal inoculation 
as a soil-quality enhancer and a plant-growth promoter 
in the presence of heavy metals found in ultramafic soils 
(Seneviratne et  al. 2016a, b), and, (ii) biochar as a soil 
amendment to immobilize Cr, Ni, and Mn in ultramafic 
soil, thereby reducing metal-induced plant toxicities 
(Herath et al. 2014).

The potential for microbial remediation (reduction) 
of Cr(VI) by indigenous microbial populations from the 
ultramafic soils of Sukinda mines in Jaipur, Orissa, India, 
was investigated by Mishra et al. (2009). The best reducer 
of Cr (V1) was Staphylococcus aureus, a gram-positive 

bacterium whose thick layer of peptidoglycan acts as a 
strong absorbent. The taxon tolerated a Cr concentration 
of 250 mg L−1 and was resistant to Ni up to 1000 mg L−1. 
The bacterium was recommended for the bioremediation 
of both Cr and Ni, showing complete Cr(VI) to Cr(III) 
degradation in 22 h, and  Ni2+ degradation to 90% in 22 h. 
Similarly, Bohidar et al. (2009) explored the possibility of 
Ni recovery from chromite tailings at the Sukinda mines 
by using three fungal strains.

In another study, Mohanty et  al. (2011) utilized phy-
toremediation in South Kaliapani, a chromite mining 
ultramafic area in Orissa, India. Chromium was extracted 
by growing Oryza sativa cv. Khandagiri (rice; Poaceae) in 
contaminated soil and irrigating with mine wastewater. 
Chromium levels were reduced (70–90%) after 100 days, 
with accumulation levels ranging from 125 to 498 µg g−1 
in leaves, 25 to 400 µg g−1 in stems, and 5 to 23 µg g−1 
in the grain. Absorption into roots was higher by two 
orders of magnitude than into any aerial part of the plant. 
Mohanty et al. (2012) also investigated the phytoremedi-
ation potential of O. sativa, Brachiaria mutica (Poaceae), 
and Eichhornia crassipes (Pontederiaceae) to reduce lev-
els of Cr(VI) in mine waste-water. Eichhornia crassipes 
was most successful with 25–54% reduction while B. 
mutica contributed to an 18–33% reduction.

Kfayatullah et al. (2001), in a study of plants and soils 
of the Malakand chromite-rich ultramafic area and 
Mardan non-ultramafic areas of the North-West Fron-
tier Province, Pakistan, focused on enzyme-bound metal 
accumulation in plant tissue. Verbascum thapsus (Scro-
phulariaceae), an edible plant, accumulated greater than 
100 µg g−1 of several metals, including Ni and Cr, but was 
not recommended for phytoremediation efforts.

Indonesia (Sulawesi and Halmahera Islands) has some 
of the largest surface exposures of ultramafic bedrock in 
the world. Lateritic Ni-mining operations have contin-
ued in the region since the early twentieth century, set-
ting the stage for exploring the use of native plants for 
phytoremediation and phytomining. Twelve native spe-
cies known to hyperaccumulate Ni are recommended by 
van der Ent et al. (2013a) for use in phytotechnologies in 
Indonesia.

Threats and conservation
Ultramafic areas are a high priority for biodiversity con-
servation because of the relatively large numbers of 
endemic species, ecotypes, and rare species that they 
harbour (Boyd et al. 2009). The conservation and resto-
ration of these naturally fragmented, edaphically unique, 
and biodiverse habitats require special attention (Baker 
et al. 2010; O’Dell 2014; Thorne et al. 2011; Whiting et al. 
2004). It is unclear how stressors, such as atmospheric 
N deposition (Vallano et  al. 2012), suppression of fire 
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(Arabas 2000; Safford and Harrison 2004) and climate 
change (Damschen et  al. 2012; Anacker and Harrison 
2012) documented for temperate and Mediterranean 
ultramafics, impact tropical Asia’s ultramafic ecosystems.

The combined forces of forest clearing, agricultural 
development and mining contribute to unprecedented 
habitat loss in South and Southeast Asia (Duckworth 
et  al. 2012; Hughes 2017; Sodhi et  al. 2004). In fact, 
Southeast Asia has a higher annual rate of deforestation 
than Meso-America, South America, or sub-Saharan 
Africa, and that rate has continued to increase between 
1990 and 2005 (Giam et al. 2010; Sodhi et al. 2010). This 
is especially of concern as Southeast Asia has a higher 
proportion of its vascular plant, reptile, bird, and mam-
mal species categorised as globally threatened on the 
Red List compared to Meso- and South America and 
sub-Saharan Africa (Sodhi et  al. 2010). With such lim-
ited study of ultramafics in South and Southeast Asia, it 
is unclear how increasing habitat loss is impacting biodi-
verse ultramafic outcrops in the region.

Malaysia has one of the most species-rich ultramafic 
floras in the world. The over 3500 km2 of ultramafic out-
crops in Sabah (4.6% of the total landmass of the state) 
on the island of Borneo harbor a total of 4252 plant spe-
cies (van der Ent et  al. 2015a). Over 2542 plant species 
have been documented on ultramafic outcrops in Kina-
balu Park alone, of which a large percentage is endemic 
to either Kinabalu Park or  to Borneo (van der Ent et al. 
2015a; Fig.  4). Despite the existence of this species-rich 
flora, the plant diversity and ecology of many ultramafic 
outcrops in Sabah remain largely unknown because of a 
lack of focused research. Furthermore, plant diversity in 
many areas of Sabah is severely threatened by land-use 
conversion and, because often plant species occur only 
at a single or a few ultramafic sites, and hence impacts 
on the ecosystems that support them could eventually 
result in their extinction. While it is necessary to iden-
tify stressors impacting ultramafic habitats of South and 
Southeast Asia for their proper management, it is even 
more critical that basic geoecological surveys of ultra-
mafic outcrops, including the extensive exposures in 
Sulawesi and Halmahera, are prioritised for cataloguing 
plant diversity and other biota. This is especially critical 
as many of these outcrops likely harbor rare and endemic 
species in need of urgent conservation attention.

Although Sri Lanka’s ultramafic flora appears to be 
impoverished with respect to endemic species or hyper-
accumulator taxa, the ultramafic sites harbor several 
taxa worthy of conservation. For example, Ussangoda, 
the site that has received the most research attention, is 
home to: four near-threatened species, Striga angustifo-
lia (Orobanchaceae), Maerua arenaria (Capparaceae), 
Salvadora percia (Salvadoraceae), and Olax imbricata 

(Olacaceae); two vulnerable species, Cyanotis adscen-
dens (Commelinaceae), Pachygone ovata (Menisper-
maceae); and one data deficient species, Alysicarpus 
monilifer (Fabaceae; MOE 2012). Therefore, it is critical 
that Sri Lanka’s ultramafic outcrops receive regional and 
national recognition and are declared as ecologically sen-
sitive sites (i.e. geoecological preserves) to be set aside for 
future investigations. In 2010, Ussangoda was declared as 
a National Park with approximately 350 hectares, includ-
ing areas overlaying ultramafic rock, set aside for conser-
vation purposes (Department of Wildlife Conservation 
2015). Without such conservation, proper management, 
and research, these unique habitats and their physiologi-
cally distinct biota are extremely vulnerable. Rinorea ben-
galensis (Violaceae) offers an example of why such efforts 
are urgently needed. Brooks et al. (1977a, b) conducted a 
survey of herbarium specimens from the entire range of 
this species, encompassing Sri Lanka, the Malay Archi-
pelago, New Guinea, the Solomon Islands and Queens-
land, Australia, and found that Ni hyperaccumulation 
is a constitutive trait in this species when growing on 
ultramafic soil. The herbarium specimen analysed from 
Sri Lanka contained 10,000 µg g−1 and the locality indi-
cated on the map presented by Brooks et al. (1977a) sug-
gests a collection in the central part of the island (see 
Fig.  1 in Rajakaruna and Baker 2004). However, it was 
not encountered in field exploration by Rajakaruna and 
Bohm (2002) and was presumed extinct in Sri Lanka 
(Ministry of Environment and Renewable Energy 2012). 
Interestingly, the taxon was recently recollected in south-
western Sri Lanka (Siril Wijesundara, National Institute 
of Fundamental Studies, Sri Lanka, pers. comm.), how-
ever, soil and plant tissue elemental concentrations have 
yet to be determined.

Conclusions
Information gaps and future directions
Ultramafic outcrops are natural laboratories for experi-
mental and applied research in a wide range of dis-
ciplines. They provide numerous opportunities for 
collaborations among geologists, pedologists, botanists, 
zoologists, microbiologists, and land managers focus-
ing on conservation and restoration research. How-
ever, research on the ultramafic outcrops in South and 
Southeast Asia has been limited, with most effort to 
date focused on Malaysia, the Philippines, the Andaman 
Islands (India), and Sri Lanka (Table 1). We were unable 
to find any published literature on ultramafic geoecology 
of other South (Afghanistan, Bhutan, Nepal) and South-
east Asian (Myanmar, Laos, Thailand, Vietnam) countries 
despite the known occurrences of ultramafic litholo-
gies  in these locales. The limited number of published 
studies we found for Myanmar, Thailand, and Vietnam 
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(Table  1) focused on geological, mineralogical, or geo-
chemical research.

Throughout South and Southeast Asia, detailed and 
systematic surveys will likely reveal numerous species 
new to science, including trace element hyperaccumu-
lators. Recent research conducted in Sabah, Malaysia 
by van der Ent et  al. (2014, 2015a, f ) which led to the 
discovery of 24 new hyperaccumulator species, is a case 
in point. Detailed floristic surveys should be under-
taken across the region and species showing unusual 
physiological behavior (such as trace element accu-
mulation) or exhibiting distinct morphological traits 
relative to populations on non-ultramafic soils may be 
further studied under laboratory and greenhouse con-
ditions. Additionally, species showing intraspecific 
variation between ultramafic and non-ultramafic popu-
lations may be evaluated via population genetic stud-
ies to determine whether ultramafic populations are 
genetically distinct from those found on non-ultramafic 
soils. For those species showing intraspecific variation 
with respect to morphological or physiological features, 
including flowering times between ultramafic and non-
ultramafic populations, common garden and reciprocal 
transplant experiments can be undertaken to examine 
whether populations are locally adapted to their sub-
strate. Such types of experimental studies are currently 
lacking entirely from the region.

In addition to detailed studies of vascular plants, it is 
important to pay close attention to non-vascular plants 
such as bryophytes, cryptogamic species such as lichens, 
soil algae and cyanoprokaryotes, and belowground 
microbes and soil invertebrates. Such investigations will 
likely reveal species that are endemic to the substrate or 
show a high affinity to ultramafic soils, as shown for such 
research conducted in South Africa (Venter et  al. 2015) 
and California, USA (Rajakaruna et al. 2012).

Species documented as trace element hyperaccumu-
lators may be investigated under controlled conditions 
for their suitability for phytoremediation or phytomin-
ing and tested under field conditions for their effective-
ness in site reclamation and restoration. The resulting 
information can be added to the global database of metal 
hyperaccumulating species (Global Hyperaccumula-
tor Database 2016: http://www.hyperaccumulators.org). 
Finally, it is critical that tropical Asia’s ultramafic out-
crops receive regional, national, and global recognition 
and that key sites receive appropriate statutory protec-
tion so that future scientific research is possible.

One of the options for protection at a national level by 
the state is the inclusion of ultramafic sites in the Global 
Geopark Network (GGN). Conservation and protection 
of landscapes of geological significance at a national and 
international level is promoted by UNESCO under its 

Global Geoparks Scheme (UNESCO 2016). At a national 
level, relevant authorities should pursue this option as a 
long-term conservation strategy, which would provide a 
holistic approach to protection by incorporating a man-
agement strategy including education and sustainable 
development. The latter would mobilize the local popula-
tion for economic benefits by participating in the conser-
vation efforts through local and international ecotourism. 
This, however, also requires meeting the stringent guide-
lines laid out by UNESCO to be included in the GGN. 
Currently, ultramafic sites in South and Southeast Asia 
are not in the GGN but would meet the basic require-
ments laid out by UNESCO.
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